查看原文
其他

三重差分法运行和示例, 附上运行代码和结果解析!

计量圈老B 计量经济圈 2022-05-11


凡是搞计量经济的,都关注这个号了

箱:econometrics666@126.com

所有计量经济圈方法论丛的code程序, 宏微观数据库和各种软件都放在社群里.欢迎到计量经济圈社群交流访问.

文后有66篇DID相关文章及代码,各位学者可以参看:


三重差分法及运行


双重差分法的关键假设是实验组与对照组的时间效应一样。这个假设只有通过足够长的时间序列数据才能检验。需要指出的一点是,即使干预发生之前两组时间序列一致,也不能保证干预发生后两组时间序列是一致的。有可能在干预发生的同时在实验组或者对照组中又发生了其他影响产出的事件,则干预发生后两组的时间趋势是不一致的。简单的双重差分估计是有偏的。如图3所示,如果对照组是虚线所示,则双重差分估计是无偏的。但如果对照组是上方的实线,则双重差分估计法是有偏的,偏差部分是在时刻,该实线与虚线之间的距离。

解决这个问题有两个思路:第一个是寻找更多的对照组,把多个对照组加权构造成一个虚拟的对照组,使得虽然每个对照组都与实验组的时间趋势不一样,但加权后的虚拟对照组的时间趋势与实验组的一样。这个方法被称作综合控制法(Synthetic Control Method)。Abadie & Gardeazabal(2003)(14)用这个方法研究了恐怖冲突对经济发展的影响。

解决这个问题的第二个思路是估算出这个因为时间趋势不同而带来的偏差,然后从双重差分结果中减去这个偏差即可。这被称作三重差分法(Difference-in-differences-in-differences, DDD)。三重差分法的思路是,既然两个地区(分别指实验组和对照组)的时间趋势不一样,那么我们可以分别在两个地区寻找一个没有受到干预影响的人群/行业,通过对这两组的双重差分估算出时间趋势的差异,然后再从原来实验组和对照组的双重差分估算值中减去这个时间趋势差异。Gruber(15)就使用了这种方法。

 

  图3 时间趋势差异造成的估计偏差

三重差分法例证:


三重差分法回归及运行命令

正如上面的二重差分法实际上运用的是OLS做的回归,我们之前说过,倍差法是相当于two-way fixed effect model,里面包括个体效应时间效应,而对于一个这样的panel data,我们可以运用LSDV通过添加个体和时间虚拟变量来回归,或者运用demeaned variables回归来消除个体和时间效应,再加上那些交互效应后就可以像其他fixed effect回归一样。二重差分法一般是在同一个省(地区)区分treatment和control组的,而三重差分法则包括另一个未受到政策冲击的省(地区),来区分treatment和control组的,当然三重差分法要稳健得多。

Empirical Methods in Applied Economics Lecture
Jorn-Steffen Pischke
http://econ.lse.ac.uk/staff/spischke/ec524/evaluation3.pdf



 接下来,我们来区分一下二重差分和三重差分在Stata的运行过程

1992年,美国新泽西州通过法律将最低工资从每小时4.25美元提高到5.05美元,但在相邻的宾夕法尼亚州最低工资却保持不变。Card and Krueger收集了两个州的快餐店在实施新法前后雇佣人数的数据,并使用双重差分法进行估计。

注:fte:full time employment人数;treated=1,表示快餐店在新泽西州,否则在宾夕法尼亚州;t=1,表示时间为1992年11月, 否则为1992年2月;bk=1,表示Burger King快餐品牌;kfc=1,表示肯德基快餐品牌;roys=1,表示Roy Rogers快餐品牌;wendys=1,表示Wendy's快餐品牌。


以下黑色字体的code可以直接在Stata上执行


1.读取数据:

use "http://fmwww.bc.edu/repec/bocode/c/CardKrueger1994.dta"

2. 简单的二重差分:

diff fte, t(treated) p(t)

*这里DD10%水平下显著


3.简单的三重差分(快餐品牌bk作为第二个处理组):

diff fte, t(treated) p(t) ddd(bk)

*这里DDD表不显著

关于DID相关文章

双重差分DID方法免费课程, 文章, 数据和代码全在这里, 优秀学人必须收藏学习!1.DID运用经典文献,强制性许可:来自对敌贸易法的证据2.连续DID经典文献, 土豆成就了旧世界的文明3.截面数据DID讲述, 截面做双重差分政策评估的范式4.RDD经典文献, RDD模型有效性稳健性检验5.事件研究法用于DID的经典文献"环境规制"论文数据和程序6.广义DID方法运用得非常经典的JHE文献7.DID的经典文献"强制许可"论文数据和do程序8.传销活动对经济发展影响, AER上截面数据分析经典文9.多期DID的经典文献big bad banks数据和do文件10.因果推断IV方法经典文献,究竟是制度还是人力资本促进了经济的发展?11.AER上因果关系确立, 敏感性检验, 异质性分析和跨数据使用经典文章12.第二篇因果推断经典,工作中断对工人随后生产效率的影响?13.密度经济学:来自柏林墙的自然实验, 最佳Econometrica论文,14.AER上以DID, DDD为识别策略的劳动和健康经济学,15.一个使用截面数据的政策评估方法, 也可以发AER,16.多期DID模型的经典文献,big bad banks讲解",17.多期DID的经典文献big bad banks数据和do文件,18.非线性DID, 双重变换模型CIC, 分位数DID,19.模糊(Fuzzy)DID是什么?如何用数据实现呢?20.多期DID的big bad banks中文翻译版本及各细节讲解,21.DID中行业/区域与时间趋势的交互项, 共同趋势检验, 动态政策效应检验等,22.截面数据DID操作程序指南, 一步一步教你做,23.DID的研究动态和政策评估中应用的文献综述,24.连续DID经典文献, 土豆成就了旧世界的文明,25.DID双重差分方法, 一些容易出错的地方,26.连续DID, DDD和比例DID, 不可观测选择偏差,27.加权DID, IPW-DID实证程序百科全书式的宝典,28.DID和DDD, 一个简明介绍, 双重和三重差分模型,29.DID过程中总结的地图展示技巧,30.DID的平行趋势假定检验程序和coefplot的其他用法,31.截面DID, 各种固定效应, 安慰剂检验, 置换检验, 其他外部冲击的处理,32.实践中双重差分法DID暗含的假设,33.过去三十年, RCT, DID, RDD, LE, ML, DSGE等方法的“高光时刻”路线图,34.计量院士首次用DID方法分析, 中国封城对新冠病毒扩散的影响!,35.截面DID, 各种固定效应, 安慰剂检验, 置换检验, 其他外部冲击的处理,36.诺奖夫妇的中国学生, “DID小公主”的成名之作, 茶叶价格与中国失踪女性之谜!,37.前沿: 反向DID, 反向双重差分法DDR全解析, 辅以实证示例!38.英诺丁汉大学校长为你讲解逐年PSM匹配-DID方法的操作, 并配上自己写的一篇范文!39.逐年PSM匹配后再DID识别因果的实证范文, 这就是逐年PSM-DID的操作范式!40.用事件研究法进行因果识别如何做? 有什么好处? 与DID结合起来潜力无穷!41.Abadie半参数双重差分DID估计量, 使你的平行趋势假设更加可信!42.弹性DID, DID的终极大法, 关于DID各方法总结太赞了!43.二重差分法分析(DID)44.比DID更加灵活的DDID政策效应评估方45.DID思路和操作,一篇相关实证文献46.二重差分法深度分析(DID),三重差分兼论47.面板数据的DID估计,透彻解读48.PSM-DID, DID, RDD, Stata程序百科全书式的宝典49.关于DID的所有解读, 资料, 程序, 数据, 文献和各种变形都在这里50.分位数DID, PSMDID, 政策前协变量平衡性检验操作步骤和案例51.PSM-DID, DID实证完整程序百科全书式的宝典52.逐年匹配的PSM-DID操作策略, 多时点panel政策评估利器53.广义DID, DID最大法宝, 无所不能的政策评估工具54.渐进DID专治各种渐进性政策的良药, 可试一试疗效55.双重差分DID的种类细分, 不得不看的20篇文章56.找不到IV, RD和DID该怎么办? 这有一种备选方法57.在教育领域使用IV, RDD, DID, PSM多吗? 使用具体References58.DID和IV操纵空间大吗? 一切皆为P-hacking59.第一篇中文DID实证论文长啥样? 60.世界上第一篇DID实证论文长啥样?61.关于双重差分法DID的32篇精选Articles专辑!62.空间双重差分法(spatial DID)最新实证papers合辑!63.空间DID双重差分方法的文献, spatial DID64.多期三重差分法和双重差分法的操作指南65.多期双重差分法,政策实施时间不同的处理方法66.三重差分法运行和示例

下面这些短链接文章属于合集,可以收藏起来阅读,不然以后都找不到了。

2.5年,计量经济圈近1000篇不重类计量文章,

可直接在公众号菜单栏搜索任何计量相关问题,

Econometrics Circle




数据系列空间矩阵 | 工企数据 | PM2.5 | 市场化指数 | CO2数据 |  夜间灯光 | 官员方言  | 微观数据 | 内部数据计量系列匹配方法 | 内生性 | 工具变量 | DID | 面板数据 | 常用TOOL | 中介调节 | 时间序列 | RDD断点 | 合成控制 | 200篇合辑 | 因果识别 | 社会网络 | 空间DID数据处理Stata | R | Python | 缺失值 | CHIP/ CHNS/CHARLS/CFPS/CGSS等 |干货系列能源环境 | 效率研究 | 空间计量 | 国际经贸 | 计量软件 | 商科研究 | 机器学习 | SSCI | CSSCI | SSCI查询 | 名家经验计量经济圈组织了一个计量社群,有如下特征:热情互助最多前沿趋势最多、社科资料最多、社科数据最多、科研牛人最多、海外名校最多。因此,建议积极进取和有强烈研习激情的中青年学者到社群交流探讨,始终坚信优秀是通过感染优秀而互相成就彼此的。

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存